‡equal contributors
*corresponding author(s)
2025
107. Switchable client specificity in a dual functional chaperone coordinates light-harvesting complex biogenesis
Alex R. Siegel, Gerard Kroon, Changqi Zhao, Peng Wang, Peter E. Wright and Shu-ou Shan*. (2025)
Science Advances. PMID: 40512866
2024
106. Channel Gating in a Post-Translational Protein Translocase
Shu-ou Shan* (2024)
Biochemistry. PMID: 39623977
105. NAC guides a ribosomal multienzyme complex for nascent protein processing
Alfred M Lentzsch‡, Denis Yudin‡, Martin Gamerdinger, Sowmya Chandrasekar, Laurenz Rabl, Alain Scaiola, Elke Deuerling, Nenad Ban* & Shu-ou Shan*.(2024)
Nature. PMID: 39169182
104. Dynamic stability of Sgt2 enables selective and privileged client handover in a chaperone triad
Hyunju Cho, Yumeng Liu, SangYoon Chung, Sowmya Chandrasekar, Shimon Weiss & Shu-ou Shan*.(2024)
Nature Communications. PMID: 38167697
103. EPR studies of chaperone interactions and dynamics
Siegel, A.‡, Singh, J.‡, Qin, P.Z.*, and Shan. S.O.* (2023)
Biophysics of Molecular Chaperones: Function, Mechanisms, and Client Protein Interactions. S. Hiller, M. Liu, L. He ed., Royal Society of Chemistry, Chapter 10.
2023
102. An ankyrin repeat chaperone targets toxic oligomers during amyloidogenesis
Gupta A, Lu C, Wang F, Chou TF, Shan SO*. (2023)
Protein Sci. PMID: 37433015
101. Dodecamer assembly of a metazoan AAA+ chaperone couples substrate extraction to refolding
Arpit Gupta‡, Alfred M. Lentzsch‡, Alex Siegel‡, Zanlin Yu, Un Seng Chio, Yifan Cheng, Shu-Ou Shan*. (2023)
Science Advances. PMID: 37163603
100. Role of Hsp70 in Post-Translational Protein Targeting: Tail-Anchored Membrane Proteins and Beyond
Shu-ou Shan*. (2023)
Int. J. Mol. Sci. PMID: 36674686
2022
99. System-wide analyses reveal essential roles of N-terminal protein modification in bacterial membrane integrity
Chien-I Yang, Zikun Zhu, Jeffrey J.Jones, Brett Lomenick, Tsui-Fen Chou, Shu-ou Shan*. (2022)
iScience PMID: 35942092
98. Ribosome profiling reveals multiple roles of SecA in cotranslational protein export
Zhu Z‡, Wang S‡, Shan SO*. (2022)
Nature Communications. PMID: 35697696
97. Ribosome-nascent Chain Interaction Regulates N-terminal Protein Modification
Yang CI, Kim J, Shan SO*. (2022)
J Mol Biol. PMID: 35278477
96. Mechanism of signal sequence handover from NAC to SRP on ribosomes during ER-protein targeting
Jomaa A‡, Gamerdinger M‡, Hsieh HH‡, Wallisch A, Chandrasekaran V, Ulusoy Z, Scaiola A, Hegde RS, Shan SO*, Ban N*, Deuerling E*. (2022)
Science. PMID: 35201867
2021
95. Fidelity of Cotranslational Protein Targeting to the Endoplasmic Reticulum.
Hsieh HH, Shan SO*. (2021)
Int J Mol Sci. PMID: 35008707
94. Subunit cooperation in the Get1/2 receptor promotes tail-anchored membrane protein insertion.
Chio US‡, Liu Y‡, Chung S, Shim WJ, Chandrasekar S, Weiss S, Shan SO*. (2021)
J Cell Biol. PMID: 34614151
93. Chloroplast SRP43 autonomously protects chlorophyll biosynthesis proteins against heat shock.
Ji S‡, Siegel A‡, Shan SO, Grimm B*, Wang P*. (2021)
Nature Plants. PMID: 34475529.
92. Molecular mechanism of cargo recognition and handover by the mammalian signal recognition particle.
Jomaa A*, Eitzinger S, Zhu Z, Chandrasekar S, Kobayashi K, Shan SO*, Ban N*. (2021)
Cell Rep. PMID: 34260909.
91. Receptor compaction and GTPase rearrangement drive SRP-mediated cotranslational protein translocation into the ER.
Lee JH‡, Jomaa A‡*, Chung S, Hwang Fu YH, Qian R, Sun X, Hsieh HH, Chandrasekar S, Bi X, Mattei S, Boehringer D, Weiss S, Ban N*, Shan SO*. (2021)
Science Advances. PMID: 34020957.
90. J-domain proteins promote client relay from Hsp70 during tail-anchored membrane protein targeting.
Cho H, Shim WJ, Liu Y, Shan SO*. (2021)
J Biol Chem.PMID: 33741343.
2020
89. Hsieh HH, Lee JH, Chandrasekar S, Shan SO*. (2020) Nat Commun., doi: 10.1038/s41467-020-19548-5. “A ribosome-associated chaperone enables substrate triage in a cotranslational protein targeting complex.” PMID: 33203865. Link to Nature Communication.
88. Siegel A‡, McAvoy CZ‡, Lam V, Liang FC, Kroon G, Miaou E, Griffin P, Wright PE, Shan SO*. (2020) J Mol Bio., doi: 10.1016/j.jmb.2020.11.007. “A disorder-to-order transition activates an ATP-Independent Membrane Protein Chaperone.” PMID: 33188783. Link to JMB.
2019
87. Yang CI, Hsieh HH, Shan SO*. (2019) Proc Natl Acad Sci U S A., doi: 10.1073/pnas.1912264116. “Timing and specificity of cotranslational nascent protein modification in bacteria.” PMID: 31666319. Link to PNAS.
86. Shan SO*. (2019) J Biol Chem, jbc.REV119.006197 “Guiding Tail-anchored Membrane Proteins to the ER In a Chaperone Cascade.” PMID: 31575659. Link to Journal of Biological Chemistry.
85. Wang S‡, Jomaa A‡, Jaskolowski M, Yang CI, Ban N*, Shan SO*. (2019) Nat Struct Mol Biol 26, 919-929. “The molecular mechanism of cotranslational membrane protein recognition and targeting by SecA.” PMID: 31570874. Link to Nature Structural & Molecular Biology .
84. Hwang Fu YH, Chandrasekar S, Lee JH, Shan SO*. (2019) J Cell Biol. 218(10): 3307-3319. “A molecular recognition feature mediates ribosome-induced SRP-receptor assembly during protein targeting.” PMID: 31537711. Link to Journal of Cell Biology.
83. Chio US, Chung S, Weiss S, and Shan SO*. (2019) Cell Rep. 26(1): 37-44.e7. “A chaperone lid ensures efficient and privileged client transfer during tail-anchored protein targeting.” PMID: 30605684. Link to Cell Reports.
2018
82. Cho H, Chio US, and Shan SO*. (2018) Curr. Protoc. Cell Biol. 81(1): e63. Methods Review. “In vitro assays for targeting and insertion of tail-anchored proteins into the ER membrane.” PMID: 30253068. Link to Current Protocols in Cell Biology.
81. Cho H and Shan SO*. (2018) EMBO J. 37(16): e99264. “Substrate relay in an Hsp70-cochaperone cascade safeguards tail-anchored membrane protein targeting.” PMID: 29973361. Link to EMBO Journal.
80. Lee JH, Chandrasekar S, Chung S, Hwang Fu YH, Liu D, Weiss S, and Shan SO*. (2018) Proc. Natl. Acad. Sci. 115(24): E5487-E5496. “Sequential activation of the human signal recognition particle by the ribosome and signal sequence drives efficient protein targeting.” PMID: 29848629. Link to PNAS.
79. McAvoy C, Siegel A, Piszkiewicz S, Miaou E, Yu M, Nguyen T, Moradian A, Sweredoski MJ, Hess S, and Shan SO*. (2018) J. Biol. Chem. 293(23): 8861-8873. “Two distinct sites of client protein interaction with the chaperone cpSRP43.” PMID: 29669809. Link to JBC.
78. Wang P, Liang FC, Wittmann D, Siegel A, Shan SO, and Grimm B*. (2018) Proc. Natl. Acad. Sci. 115(15): E3588-E3596. “Chloroplast SRP43 acts as a chaperone for glutamyl-tRNA reductase, the rate-limiting enzyme in tetrapyrrole biosynthesis.” PMID: 29581280. Link to PNAS.
77. Kobayashi K‡, Jomaa A‡, Lee JH, Chandrasekar S, Boehringer D, Shan SO, and Ban N*. (2018) Science 360(6386): 323-327. “Structure of a prehandover mammalian ribosomal SRP•SRP receptor targeting complex.” PMID: 29567807. Link to Science.
2017
76. Chio US, Cho H, and Shan SO*. (2017) Annu. Rev. Cell Dev. Biol. 33, 417-438. Review. “Mechanisms of tail-anchored membrane protein targeting and insertion.” PMID: 28992441. Link to ARCDB.
75. Chio US, Chung S, Weiss S*, and Shan SO*. (2017) Proc. Natl. Acad. Sci. 114(41), E8585-E8594. “A protean clamp guides membrane targeting of tail-anchored proteins.” PMID: 28973888. Link to PNAS.
74. Wang S, Yang CI, and Shan SO*. (2017) J. Cell Biol. 216(11), 3639-3653. “SecA mediates cotranslational targeting and translocation of an inner membrane protein.” PMID: 28928132. Link to JCB.
73. Hwang Fu YH, Huang WYC, Shen K, Groves JT, Miller T, and Shan SO*. (2017) eLife 6, e25885. “Two-step membrane binding by the bacterial SRP receptor enables efficient and accurate co-translational protein targeting.” PMID: 28753124. Link to eLife.
72. Jomaa A, Hwang Fu YH, Boehringer D, Leibundgut M, Shan SO, and Ban N*. (2017) Nat. Commun. 8, 15470. “Structure of the quaternary complex between SRP, SR, and translocon bound to the translating ribosome.” PMID: 28524878. Link to Nature Communications.
2016
71. Rao M, Okreglak V‡, Chio US‡, Cho H, Walter P, and Shan SO*. (2016) eLife 5, e21301. “Multiple selection filters ensure accurate tail-anchor membrane protein targeting.” PMID: 27925580. Link to eLife.
70. Chandrasekar S, Shan SO*. (2016) J. Biol. Chem. 292(1), 397-406. “Anionic phospholipids and the Albino3 translocase activate SRP-receptor interaction during LHCP targeting.” PMID:27895124.
69. Chandrasekar S, Sweredoski MJ, Sohn CH, Hess S, Shan SO*. (2016) J. Biol. Chem. 292(1), 386-396. “Co-evolution of two GTPases enables efficient protein targeting in an RNA-less chloroplast Signal Recognition Particle pathway.” PMID:27895118.
68. Shan SO*. (2016) Trends Biochem. Sci. 41(12), 1050-1060. Review. “ATPase and GTPase Tangos drive intracellular protein transport.” PMID: 27658684.
67. Liu W, Zhou M‡, Li Z‡, Li H, Polaczek P, Dai H, Wu Q, Liu C, Karanja KK, Popuri V, Shan SO, Schlacher K, Zheng L*, Campbell JL*, and Shen B*. (2016) EBioMedicine 6, 73-86. “A selective small molecule DNA2 inhibitor for sensitization of human cancer cells to chemotherapy.” PMID: 27211550.
66. Liang FC, Kroon G, McAvoy CZ, Chi C, Wright P*, and Shan SO*. (2016) Proc. Natl. Acad. Sci. 113(12), E1615-E1624. “Conformational dynamics of a membrane protein chaperone enables spatially regulated substrate capture and release.” PMID: 26951662.
65. Chen Y, Shen K, Shan SO, and Kou SC*. (2016) J. Amer. Statist. Assoc. 111(515), 951-966. “Analyzing single-molecule protein transportation experiments via hierarchical hidden Markov models.” PMID: 28943680. Link to journal.
2015
64. Gristick HB‡, Rome ME‡, Chartron J, Rao M, Hess S, Shan SO*, and Clemons WM Jr*. (2015) J. Biol. Chem. 290(50), 30006-30017. “Mechanism of assembly of a substrate transfer complex during tail-anchored protein targeting.” PMID: 26451041.
63. Ariosa AR, Lee JH, Wang S, Saraogi I, and Shan SO*. (2015) Proc. Natl. Acad. Sci. 112(25), E3169-E3178. "Regulation by a chaperone improves substrate selectivity during cotranslational protein targeting." PMID: 26056263. Link to PNAS.
62. von Loeffelholz O‡, Jiang Q (姜启阳)‡, Ariosa AR, Karuppasamy M, Huard K, Berger I, Shan SO, and Schaffitzel C*. (2015) Proc. Natl. Acad. Sci. 112(13), 3943-3948. "Ribosome–SRP–FtsY cotranslational targeting complex in the closed state." PMID: 25775537.
2014
61. Rome ME, Chio US, Rao M, Gristick HB, and Shan SO*. (2014) Proc. Natl. Acad. Sci. 111(46), E4929-E4935. "Differential gradients of interaction affinities drive efficient targeting and recycling in the GET pathway." PMID: 25368153.
60. Saraogi I‡*, Akopian D‡, and Shan SO*. (2014) J. Cell Biol. 205(5), 693-706. "Regulation of cargo recognition, commitment, and unloading drives cotranslational protein targeting." PMID: 24914238.
59. Zhang X and Shan SO*. (2014) Annu. Rev. Biophys. 43, 381-408. Review. "Fidelity of cotranslational protein targeting by the signal recognition particle." PMID: 24895856.
58. Guo H‡, Xiong Y‡, Witkowski P, Cui J, Wang LJ, Sun J, Lara-Lemus R, Haataja L, Hutchison K, Shan SO*, Arvan P*, and Liu M*. (2014) J. Biol. Chem. 289(23), 16290-16302. "Inefficient translocation of preproinsulin contributes to pancreatic β cell failure and late-onset diabetes." PMID: 24770419.
57. Gristick HB, Rao M, Chartron JW, Rome ME, Shan SO, and Clemons WM Jr*. (2014) Nat. Struct. Mol. Biol. 21(5), 437-442. "Crystal structure of ATP-bound Get3–Get4–Get5 complex reveals regulation of Get3 by Get4." PMID: 24211265.
56. Saraogi I* and Shan SO*. (2014) Biochim. Biophys. Acta 1843(8), 1433-1441. Review. “Co-translational protein targeting to the bacterial membrane.” PMID: 24513458.
55. Loson OC, Liu R, Rome ME, Meng S, Kaiser JT, Shan SO, and Chan DC*. (2014) Structure 22(3), 367-377. “The mitochondrial fission receptor MiD51 requires ADP as a cofactor.” PMID: 24508339.
2013
54. Voigts-Hoffmann F‡, Schmitz N‡, Shen K, Shan SO*, Ataide SF*, and Ban N*. (2013) Molecular Cell 52(5), 643-654. "The structural basis of FtsY recruitment and GTPase activation by SRP RNA." PMID: 24727835.
53. Shen K, Wang Y, Hwang Fu YH, Zhang Q, Feigon J, and Shan SO*. (2013) J. Biol. Chem. 288(51), 36385-36397. "Molecular mechanism of GTPase activation at the SRP RNA distal end." PMID: 24151069.
52. Rome ME‡, Rao M‡, Clemons WM Jr., and Shan SO*. (2013) Proc. Natl. Acad. Sci. 110(19), 7666-7671. “Precise timing of ATPase activation drives targeting of tail-anchored proteins.” PMID: 23610396.
51. von Loeffelholz O, Knoops K‡, Ariosa AR‡, Zhang X, Karuppasamy M, Huard K, Schoehn G, Berger I, Shan SO*, and Schaffitzel C*. (2013) Nat. Struct. Mol. Biol. 20(5), 604-610. “Structural basis of signal sequence surveillance and selection by the SRP-FtsY complex.” PMID: 23563142.
50. Jaru-Ampornpan P, Liang FC, Nisthal A, Nguyen TX, Wang P, Shen K, Mayo SL, and Shan SO*. (2013) J. Biol. Chem. 288(19), 13431-13445. “Mechanism of an ATP-independent protein disaggregase. II. Distinct molecular interactions drive multiple steps during aggregate disassembly.” PMID: 23519468.
49. Nguyen TX, Jaru-Ampornpan P, Lam VQ, Cao P, Piszkiewicz S, and Shan SO*. (2013) J. Biol. Chem. 288(19), 13420-13430. “Mechanism of an ATP-independent protein disaggregase. I. Structure of a membrane protein aggregate reveals a mechanism of recognition by its chaperone.” PMID: 23525109.
48. Pierce NW‡, Lee JE‡, Liu X, Sweredoski MJ, Graham RLJ, Larimore EA, Rome ME, Zheng N, Clurman BE, Hess S, Shan SO‡‡, and Deshaies RJ‡‡*. (2013) Cell 153(1), 206-215. “Cand1 promotes assembly of new SCF complexes through dynamic exchange of F box proteins.” PMID: 23453757. Preview: Cell 153(1), 14-16. Highlighted in Faculty of 1000.
47. Akopian D, Dalal K, Shen K, Duong F, and Shan SO*. (2013) J. Cell Biol. 200(4), 397-405. “SecYEG activates GTPases to drive the completion of cotranslational protein targeting.” PMID: 23401005. Highlight: J. Cell Biol. 200(4), 362.2 (2013).
46. Akopian D, Shen K, Zhang X, and Shan SO*. (2013) Annu. Rev. Biochem. 82, 693-721. Review. “Signal recognition particle: an essential protein targeting machine.” PMID: 23414305.
2012
45. Shen K, Arslan S, Akopian D, Ha T, and Shan SO*. (2012) Nature 492(7428), 271-275. “Activated GTPase movement on an RNA scaffold drives cotranslational protein targeting.” PMID: 23235881. News and Views: Nature 492, 189-191 (2012). Highlighted in Faculty of 1000.
44. Ariosa AR, Duncan S, Saraogi I, Lu X, Brown A, Phillips GJ, and Shan SO*. (2012) Mol. Biol. Cell. 24(2), 63-73. “Fingerloop activates cargo delivery and unloading during co-translational protein targeting.” PMID: 23135999.
43. Liu M*, Lara-Lemus R, Shan SO, Wright J, Haataja L, Barbetti F, Guo H, Larkin D, and Arvan P*. (2012) Diabetes 61, 828-837. “Impaired cleavage of preproinsulin signal peptide linked to autosomal-dominant diabetes.” PMID: 22357960.
42. Zhang D and Shan SO*. (2012) J. Biol. Chem. 287(10), 7652-7660. “Translation elongation regulates substrate selection by the signal recognition particle.” PMID: 22228766.
41. Zhang D, Sweredoski MJ, Graham RL, Hess S, and Shan SO*. (2012) Mol. Cell Proteomics, 11(2), M111.011585. “Novel proteomic tools reveal essential roles of SRP and importance of proper membrane protein biogenesis.” PMID: 22030350.
2011
40. Saraogi I, Akopian D, and Shan SO*. (2011) Protein Sci. 20, 1790-1795. Review. “A tale of two GTPases in co-translational protein targeting.” PMID: 21898651.
39. Saraogi I, Zhang D, Chandrasekaran S, and Shan SO*. (2011) J. Am. Chem. Soc. 133, 14936-9. "Site-specific fluorescent labeling of nascent proteins on the translating ribosome." PMID: 21870811.
38. Nguyen TX, Chandrasekar S, Neher S, Walter P, and Shan SO*. (2011) Biochemistry 50, 7208-7217. “Concerted complex assembly and GTPase activation in the chloroplast signal recognition particle.” PMID: 21780778.
37. Ataide SF, Schmitz N‡, Shen K‡, Ke A, Shan SO, Doudna JA*, and Ban N*. (2011) Science 331, 881-886. “The crystal structure of the signal recognition particle in complex with its receptor.” PMID: 21330537. Highlighted in Faculty of 1000.
36. Shen K, Zhang X, and Shan SO*. (2011) RNA 17, 892-902. “Synergistic actions between the SRP RNA and translating ribosome allow efficient delivery of the correct cargos during cotranslational protein targeting.” PMID: 21460239.
35. Saraogi I and Shan SO*. (2011) Traffic 12, 535-542. Review. “Molecular mechanism of co-translational protein targeting by the signal recognition particle.” PMID: 21291501.
34. Estrozi LF‡, Boehringer D‡, Shan SO, Ban N*, and Schaffitzel C*. (2011) Nat. Struct. Mol. Biol. 18, 88-90. "Cryo-EM structure of the E. coli translating ribosome in complex with SRP and its receptor.” PMID: 21151118.
33. Zhang X, Lam VQ‡, Mou Y‡, Kimura T, Chung J, Chandrasekar S, Winkler JR, Mayo SL, and Shan SO*. (2011) Proc. Nat. Acad. Sci. 108, 6450-6455. “Direct visualization reveals dynamics of a transient intermediate during protein assembly.” PMID: 21464281.
2010
32. Lam VQ‡, Akopian D‡, Rome ME‡, Henningsen D, and Shan SO*. (2010) J. Cell. Biol. 190, 623-635. “Lipid activation of the signal recognition particle receptor provides spatial coordination of protein targeting.” PMID: 20733058.
31. Zhang X, Rashid R, Wang K, and Shan SO*. (2010) Science 328, 757-760. "Sequential checkpoints govern substrate selection during cotranslational protein targeting.” PMID: 20448185.
30. Jaru-Ampornpan P, Shen K‡, Lam VQ‡, Ali M, Doniach S, Jia TZ, and Shan SO*. (2010) Nat. Struct. Mol. Biol. 17, 696-702. “ATP-independent reversal of a membrane protein aggregate by a chloroplast SRP subunit.” PMID: 20424608. News and Views: Nat. Struct. Mol. Biol. 17, 676-677 (2010).
29. Shen K and Shan SO*. (2010) Proc. Natl. Acad. Sci. U. S. A. 107, 7698-7703. “Transient tether between the SRP RNA and SRP receptor ensures efficient cargo delivery during cotranslational protein targeting.” PMID: 20385832.
2009
28. Pierce NW, Kleiger G, Shan SO‡, and Deshaies RJ‡*. (2009) Nature 462, 615-619. “Detection of sequential polyubiquitylation on a millisecond timescale.” PMID: 19956254. News and Views: Nature 462, 585-586 (2009).
27. Jaru-Ampornpan P, Nguyen TX, and Shan SO*. (2009) Mol. Biol. Cell 20, 3965-3973. "A distinct mechanism to achieve efficient signal recognition particle (SRP)-SRP receptor interaction by the chloroplast SRP pathway.” PMID: 19587121.
26. Shan SO*, Schmid S, and Zhang X. (2009) Biochemistry 48, 6696-6704. Review. “Signal recognition particle (SRP) and SRP receptor: a new paradigm for multistate regulatory GTPases.” PMID: 19469550.
25. Zhang X, Schaffitzel C, Ban N, and Shan SO*. (2009) Proc. Natl. Acad. Sci. 106, 1754-1759. "Multiple conformational switches in a GTPase complex control co-translational protein targeting." PMID: 19174514.
2008
24. Zhang X, Kung S, and Shan SO*. (2008) J. Mol. Biol. 381, 581-593. "Demonstration of a multistep mechanism for assembly of the SRP-SRP receptor complex: implications for the catalytic role of SRP RNA." PMID: 18617187.
23. Chandrasekar S‡, Chartron J‡, Jaru-Ampornpan P, and Shan SO*. (2008) J. Mol. Biol. 375, 425-436. “Structure of the chloroplast signal recognition particle (SRP) receptor: domain arrangement modulates SRP-receptor interaction.” PMID: 18035371.
2007
22. Shan SO*, Chandrasekar S, and Walter P. (2007) J. Cell Biol. 178, 611-620. “Conformational changes in the GTPase modules of the signal recognition particle and its receptor drive initiation of protein translocation.” PMID: 17682051. Highlighted in Faculty of 1000.
21. Jaru-Ampornpan P, Chandrasekar S, and Shan SO*. (2007) Mol. Biol. Cell 18, 2636-2645. “Efficient interaction between two GTPases allows the chloroplast SRP pathway to bypass the requirement for an SRP RNA." PMID: 17475780. Highlighted in InCyte from MBC.
1992-2006
20. Shan SO* and Walter P. (2005) Biochemistry 44, 6214-6222. “Molecular crosstalk between the nucleotide specificity determinant of the SRP GTPase and the SRP receptor.” PMID: 15835909.
19. Shan SO and Walter P*. (2005) FEBS Letters 579, 921-926. Review. “Co-translational protein targeting by the signal recognition particle.” PMID: 15680975.
18. Chu F, Shan SO, Moustakas DT, Alber F, Egea F, Stroud RM, Walter P, and Burlingame AL*. (2004) Proc. Natl. Acad. Sci. U. S. A. 101, 16454-16459. “Unraveling the interface of signal recognition particle and its receptor by using chemical cross-linking and tandem mass-spectrometry.” PMID: 15546976.
17. Shan SO*, Stroud RM, and Walter P. (2004) PLoS Biology 2, e320. “Mechanism of association and reciprocal activation between two GTPases.” PMID: 15383838. Highlighted in Faculty of 1000.
16. Egea PF, Shan SO, Napetschnig J, Savage DF, Walter P, and Stroud RM*. (2004) Nature 427, 215-221. “Substrate twinning activates the signal recognition particle and its receptor.” PMID: 14724630. Highlighted in Faculty of 1000.
15. Shan SO and Walter P*. (2003) Proc. Natl. Acad. Sci. U. S. A. 100, 4480–4485. “Induced nucleotide specificity in a GTPase.” PMID: 12663860.
14. Shan SO and Herschlag D*. (2002) RNA 8, 861-872. “Dissection of a metal-ion-mediated conformational change in Tetrahymena ribozyme catalysis.” PMID: 12166641.
13. Peluso P, Shan SO, Nock S, Herschlag D, and Walter P*. (2001) Biochemistry 40, 15224-15233. “Role of SRP RNA in the GTPase cycles of Ffh and FtsY.” PMID: 11735405. Highlighted in Faculty of 1000.
12. Shan SO, Kravchuk AV, Piccirilli JA*, and Herschlag D*. (2001) Biochemistry 40, 5161-5171. “Defining the catalytic metal ion interactions in the Tetrahymena ribozyme catalysis.” PMID: 11318638. Link to Biochemistry.
11. Shan SO and Herschlag D*. (2000) RNA 6, 795-813. “An unconventional origin of metal-ion rescue and inhibition in the Tetrahymena group I ribozyme reaction.” PMID: 10864040. Link to RNA.
10. Yoshida A‡, Shan SO‡, Herschlag D*, and Piccirilli JA*. (2000) Chem. Biol. 7, 85-96. “The role of the cleavage site 2'-hydroxyl in the Tetrahymena group I ribozyme reaction.” PMID: 10662698. Link to Chem. & Biol.
9. Shan SO, Yoshida A, Sun S, Piccirilli JA*, and Herschlag D*. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 12299-12304. “Three metal ions at the active site of the Tetrahymena group I ribozyme.” PMID: 10535916. Link to PNAS.
8. Shan SO, Narlikar GJ, and Herschlag D*. (1999) Biochemistry 38, 10976-10988. “Protonated 2'-aminoguanosine as a probe of the electrostatic environment of the active site of the Tetrahymena group I ribozyme.” PMID: 10460152. Link to Biochemistry.
7. Shan SO and Herschlag D*. (1999) Biochemistry 38, 10958-10975. “Probing the role of metal ions in RNA catalysis: kinetic and thermodynamic characterization of a metal ion interaction with the 2'-moiety of the guanosine nucleophile in the Tetrahymena group I ribozyme.” PMID: 10460151. Link to Biochemistry.
6. Shan SO and Herschlag D*. (1999) in Methods in Enzymology, vol 308, part E, ed. V. Schramm & D.L. Purich, Academic Press, New York. pp 246-275. “Hydrogen bonding in enzymatic catalysis: analysis of energetic contributions.” PMID: 10507008.
5. Shan SO and Herschlag D*. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 14474-14479. “The change in hydrogen bond strength accompanying charge rearrangement: implications for enzymatic catalysis.” PMID: 8962076. Link to PNAS.
4. Shan SO and Herschlag D*. (1996) J. Am. Chem. Soc. 118, 5515-5518. “Energetic effects of multiple hydrogen bonds. Implications for enzymatic catalysis.” Link to JACS.
3. Shan SO, Loh S, and Herschlag D*. (1996) Science 272, 97-101. “The energetics of hydrogen bonds in model systems. Implications for enzymatic catalysis.” PMID: 8600542. Link to Science.
2. Shan SO and Armstrong RN*. (1994) J. Biol. Chem. 269, 32373-32379. “Rational reconstruction of the active site of a class mu glutathione S-transferase.” PMID: 7798237. Link to JBC.
1. Zhang P, Liu S, Shan SO, Ji X, Gilliland GL*, and Armstrong RN*. (1992) Biochemistry 31, 10185-10193. “Modular mutagenesis of eons 1, 2, and 8 of a glutathione S-transferase from the mu class: mechanistic and structural consequences from chimeras of isoenzyme 3-3.” PMID: 1420140. Link to Biochemistry.