‡equal contributors
*corresponding author(s)
2024
104. NAC guides a ribosomal multienzyme complex for nascent protein processing
Alfred M Lentzsch‡, Denis Yudin‡, Martin Gamerdinger, Sowmya Chandrasekar, Laurenz Rabl, Alain Scaiola, Elke Deuerling, Nenad Ban* & Shu-ou Shan*.(2024)
Nature. PMID: 39169182
103. Dynamic stability of Sgt2 enables selective and privileged client handover in a chaperone triad
Hyunju Cho, Yumeng Liu, SangYoon Chung, Sowmya Chandrasekar, Shimon Weiss & Shu-ou Shan*.(2024)
Nature Communications. PMID: 38167697
2023
102. An ankyrin repeat chaperone targets toxic oligomers during amyloidogenesis
Gupta A, Lu C, Wang F, Chou TF, Shan SO*. (2023)
Protein Sci. PMID: 37433015
101. Dodecamer assembly of a metazoan AAA+ chaperone couples substrate extraction to refolding
Arpit Gupta‡, Alfred M. Lentzsch‡, Alex Siegel‡, Zanlin Yu, Un Seng Chio, Yifan Cheng, Shu-Ou Shan*. (2023)
Science Advances. PMID: 37163603
100. Role of Hsp70 in Post-Translational Protein Targeting: Tail-Anchored Membrane Proteins and Beyond
Shu-ou Shan*. (2023)
Int. J. Mol. Sci. PMID: 36674686
2022
99. System-wide analyses reveal essential roles of N-terminal protein modification in bacterial membrane integrity
Chien-I Yang, Zikun Zhu, Jeffrey J.Jones, Brett Lomenick, Tsui-Fen Chou, Shu-ou Shan*. (2022)
iScience PMID: 35942092
98. Ribosome profiling reveals multiple roles of SecA in cotranslational protein export
Zhu Z‡, Wang S‡, Shan SO*. (2022)
Nature Communications. PMID: 35697696
97. Ribosome-nascent Chain Interaction Regulates N-terminal Protein Modification
Yang CI, Kim J, Shan SO*. (2022)
J Mol Biol. PMID: 35278477
96. Mechanism of signal sequence handover from NAC to SRP on ribosomes during ER-protein targeting
Jomaa A‡, Gamerdinger M‡, Hsieh HH‡, Wallisch A, Chandrasekaran V, Ulusoy Z, Scaiola A, Hegde RS, Shan SO*, Ban N*, Deuerling E*. (2022)
Science. PMID: 35201867
2021
95. Fidelity of Cotranslational Protein Targeting to the Endoplasmic Reticulum.
Hsieh HH, Shan SO*. (2021)
Int J Mol Sci. PMID: 35008707
94. Subunit cooperation in the Get1/2 receptor promotes tail-anchored membrane protein insertion.
Chio US‡, Liu Y‡, Chung S, Shim WJ, Chandrasekar S, Weiss S, Shan SO*. (2021)
J Cell Biol. PMID: 34614151
93. Chloroplast SRP43 autonomously protects chlorophyll biosynthesis proteins against heat shock.
Ji S‡, Siegel A‡, Shan SO, Grimm B*, Wang P*. (2021)
Nature Plants. PMID: 34475529.
92. Molecular mechanism of cargo recognition and handover by the mammalian signal recognition particle.
Jomaa A*, Eitzinger S, Zhu Z, Chandrasekar S, Kobayashi K, Shan SO*, Ban N*. (2021)
Cell Rep. PMID: 34260909.
91. Receptor compaction and GTPase rearrangement drive SRP-mediated cotranslational protein translocation into the ER.
Lee JH‡, Jomaa A‡*, Chung S, Hwang Fu YH, Qian R, Sun X, Hsieh HH, Chandrasekar S, Bi X, Mattei S, Boehringer D, Weiss S, Ban N*, Shan SO*. (2021)
Science Advances. PMID: 34020957.
90. J-domain proteins promote client relay from Hsp70 during tail-anchored membrane protein targeting.
Cho H, Shim WJ, Liu Y, Shan SO*. (2021)
J Biol Chem.PMID: 33741343.
2020
89. Hsieh HH, Lee JH, Chandrasekar S, Shan SO*. (2020) Nat Commun., doi: 10.1038/s41467-020-19548-5. “A ribosome-associated chaperone enables substrate triage in a cotranslational protein targeting complex.” PMID: 33203865. Link to Nature Communication.
88. Siegel A‡, McAvoy CZ‡, Lam V, Liang FC, Kroon G, Miaou E, Griffin P, Wright PE, Shan SO*. (2020) J Mol Bio., doi: 10.1016/j.jmb.2020.11.007. “A disorder-to-order transition activates an ATP-Independent Membrane Protein Chaperone.” PMID: 33188783. Link to JMB.
2019
87. Yang CI, Hsieh HH, Shan SO*. (2019) Proc Natl Acad Sci U S A., doi: 10.1073/pnas.1912264116. “Timing and specificity of cotranslational nascent protein modification in bacteria.” PMID: 31666319. Link to PNAS.
86. Shan SO*. (2019) J Biol Chem, jbc.REV119.006197 “Guiding Tail-anchored Membrane Proteins to the ER In a Chaperone Cascade.” PMID: 31575659. Link to Journal of Biological Chemistry.
85. Wang S‡, Jomaa A‡, Jaskolowski M, Yang CI, Ban N*, Shan SO*. (2019) Nat Struct Mol Biol 26, 919-929. “The molecular mechanism of cotranslational membrane protein recognition and targeting by SecA.” PMID: 31570874. Link to Nature Structural & Molecular Biology .
84. Hwang Fu YH, Chandrasekar S, Lee JH, Shan SO*. (2019) J Cell Biol. 218(10): 3307-3319. “A molecular recognition feature mediates ribosome-induced SRP-receptor assembly during protein targeting.” PMID: 31537711. Link to Journal of Cell Biology.
83. Chio US, Chung S, Weiss S, and Shan SO*. (2019) Cell Rep. 26(1): 37-44.e7. “A chaperone lid ensures efficient and privileged client transfer during tail-anchored protein targeting.” PMID: 30605684. Link to Cell Reports.
2018
82. Cho H, Chio US, and Shan SO*. (2018) Curr. Protoc. Cell Biol. 81(1): e63. Methods Review. “In vitro assays for targeting and insertion of tail-anchored proteins into the ER membrane.” PMID: 30253068. Link to Current Protocols in Cell Biology.
81. Cho H and Shan SO*. (2018) EMBO J. 37(16): e99264. “Substrate relay in an Hsp70-cochaperone cascade safeguards tail-anchored membrane protein targeting.” PMID: 29973361. Link to EMBO Journal.
80. Lee JH, Chandrasekar S, Chung S, Hwang Fu YH, Liu D, Weiss S, and Shan SO*. (2018) Proc. Natl. Acad. Sci. 115(24): E5487-E5496. “Sequential activation of the human signal recognition particle by the ribosome and signal sequence drives efficient protein targeting.” PMID: 29848629. Link to PNAS.
79. McAvoy C, Siegel A, Piszkiewicz S, Miaou E, Yu M, Nguyen T, Moradian A, Sweredoski MJ, Hess S, and Shan SO*. (2018) J. Biol. Chem. 293(23): 8861-8873. “Two distinct sites of client protein interaction with the chaperone cpSRP43.” PMID: 29669809. Link to JBC.
78. Wang P, Liang FC, Wittmann D, Siegel A, Shan SO, and Grimm B*. (2018) Proc. Natl. Acad. Sci. 115(15): E3588-E3596. “Chloroplast SRP43 acts as a chaperone for glutamyl-tRNA reductase, the rate-limiting enzyme in tetrapyrrole biosynthesis.” PMID: 29581280. Link to PNAS.
77. Kobayashi K‡, Jomaa A‡, Lee JH, Chandrasekar S, Boehringer D, Shan SO, and Ban N*. (2018) Science 360(6386): 323-327. “Structure of a prehandover mammalian ribosomal SRP•SRP receptor targeting complex.” PMID: 29567807. Link to Science.
2017
76. Chio US, Cho H, and Shan SO*. (2017) Annu. Rev. Cell Dev. Biol. 33, 417-438. Review. “Mechanisms of tail-anchored membrane protein targeting and insertion.” PMID: 28992441. Link to ARCDB.
75. Chio US, Chung S, Weiss S*, and Shan SO*. (2017) Proc. Natl. Acad. Sci. 114(41), E8585-E8594. “A protean clamp guides membrane targeting of tail-anchored proteins.” PMID: 28973888. Link to PNAS.
74. Wang S, Yang CI, and Shan SO*. (2017) J. Cell Biol. 216(11), 3639-3653. “SecA mediates cotranslational targeting and translocation of an inner membrane protein.” PMID: 28928132. Link to JCB.
73. Hwang Fu YH, Huang WYC, Shen K, Groves JT, Miller T, and Shan SO*. (2017) eLife 6, e25885. “Two-step membrane binding by the bacterial SRP receptor enables efficient and accurate co-translational protein targeting.” PMID: 28753124. Link to eLife.
72. Jomaa A, Hwang Fu YH, Boehringer D, Leibundgut M, Shan SO, and Ban N*. (2017) Nat. Commun. 8, 15470. “Structure of the quaternary complex between SRP, SR, and translocon bound to the translating ribosome.” PMID: 28524878. Link to Nature Communications.
2016
71. Rao M, Okreglak V‡, Chio US‡, Cho H, Walter P, and Shan SO*. (2016) eLife 5, e21301. “Multiple selection filters ensure accurate tail-anchor membrane protein targeting.” PMID: 27925580. Link to eLife.
70. Chandrasekar S, Shan SO*. (2016) J. Biol. Chem. 292(1), 397-406. “Anionic phospholipids and the Albino3 translocase activate SRP-receptor interaction during LHCP targeting.” PMID:27895124.
69. Chandrasekar S, Sweredoski MJ, Sohn CH, Hess S, Shan SO*. (2016) J. Biol. Chem. 292(1), 386-396. “Co-evolution of two GTPases enables efficient protein targeting in an RNA-less chloroplast Signal Recognition Particle pathway.” PMID:27895118.
68. Shan SO*. (2016) Trends Biochem. Sci. 41(12), 1050-1060. Review. “ATPase and GTPase Tangos drive intracellular protein transport.” PMID: 27658684.
67. Liu W, Zhou M‡, Li Z‡, Li H, Polaczek P, Dai H, Wu Q, Liu C, Karanja KK, Popuri V, Shan SO, Schlacher K, Zheng L*, Campbell JL*, and Shen B*. (2016) EBioMedicine 6, 73-86. “A selective small molecule DNA2 inhibitor for sensitization of human cancer cells to chemotherapy.” PMID: 27211550.
66. Liang FC, Kroon G, McAvoy CZ, Chi C, Wright P*, and Shan SO*. (2016) Proc. Natl. Acad. Sci. 113(12), E1615-E1624. “Conformational dynamics of a membrane protein chaperone enables spatially regulated substrate capture and release.” PMID: 26951662.
65. Chen Y, Shen K, Shan SO, and Kou SC*. (2016) J. Amer. Statist. Assoc. 111(515), 951-966. “Analyzing single-molecule protein transportation experiments via hierarchical hidden Markov models.” PMID: 28943680. Link to journal.
2015
64. Gristick HB‡, Rome ME‡, Chartron J, Rao M, Hess S, Shan SO*, and Clemons WM Jr*. (2015) J. Biol. Chem. 290(50), 30006-30017. “Mechanism of assembly of a substrate transfer complex during tail-anchored protein targeting.” PMID: 26451041.
63. Ariosa AR, Lee JH, Wang S, Saraogi I, and Shan SO*. (2015) Proc. Natl. Acad. Sci. 112(25), E3169-E3178. "Regulation by a chaperone improves substrate selectivity during cotranslational protein targeting." PMID: 26056263. Link to PNAS.
62. von Loeffelholz O‡, Jiang Q (姜启阳)‡, Ariosa AR, Karuppasamy M, Huard K, Berger I, Shan SO, and Schaffitzel C*. (2015) Proc. Natl. Acad. Sci. 112(13), 3943-3948. "Ribosome–SRP–FtsY cotranslational targeting complex in the closed state." PMID: 25775537.
2014
61. Rome ME, Chio US, Rao M, Gristick HB, and Shan SO*. (2014) Proc. Natl. Acad. Sci. 111(46), E4929-E4935. "Differential gradients of interaction affinities drive efficient targeting and recycling in the GET pathway." PMID: 25368153.
60. Saraogi I‡*, Akopian D‡, and Shan SO*. (2014) J. Cell Biol. 205(5), 693-706. "Regulation of cargo recognition, commitment, and unloading drives cotranslational protein targeting." PMID: 24914238.
59. Zhang X and Shan SO*. (2014) Annu. Rev. Biophys. 43, 381-408. Review. "Fidelity of cotranslational protein targeting by the signal recognition particle." PMID: 24895856.
58. Guo H‡, Xiong Y‡, Witkowski P, Cui J, Wang LJ, Sun J, Lara-Lemus R, Haataja L, Hutchison K, Shan SO*, Arvan P*, and Liu M*. (2014) J. Biol. Chem. 289(23), 16290-16302. "Inefficient translocation of preproinsulin contributes to pancreatic β cell failure and late-onset diabetes." PMID: 24770419.
57. Gristick HB, Rao M, Chartron JW, Rome ME, Shan SO, and Clemons WM Jr*. (2014) Nat. Struct. Mol. Biol. 21(5), 437-442. "Crystal structure of ATP-bound Get3–Get4–Get5 complex reveals regulation of Get3 by Get4." PMID: 24211265.
56. Saraogi I* and Shan SO*. (2014) Biochim. Biophys. Acta 1843(8), 1433-1441. Review. “Co-translational protein targeting to the bacterial membrane.” PMID: 24513458.
55. Loson OC, Liu R, Rome ME, Meng S, Kaiser JT, Shan SO, and Chan DC*. (2014) Structure 22(3), 367-377. “The mitochondrial fission receptor MiD51 requires ADP as a cofactor.” PMID: 24508339.
2013
54. Voigts-Hoffmann F‡, Schmitz N‡, Shen K, Shan SO*, Ataide SF*, and Ban N*. (2013) Molecular Cell 52(5), 643-654. "The structural basis of FtsY recruitment and GTPase activation by SRP RNA." PMID: 24727835.
53. Shen K, Wang Y, Hwang Fu YH, Zhang Q, Feigon J, and Shan SO*. (2013) J. Biol. Chem. 288(51), 36385-36397. "Molecular mechanism of GTPase activation at the SRP RNA distal end." PMID: 24151069.
52. Rome ME‡, Rao M‡, Clemons WM Jr., and Shan SO*. (2013) Proc. Natl. Acad. Sci. 110(19), 7666-7671. “Precise timing of ATPase activation drives targeting of tail-anchored proteins.” PMID: 23610396.
51. von Loeffelholz O, Knoops K‡, Ariosa AR‡, Zhang X, Karuppasamy M, Huard K, Schoehn G, Berger I, Shan SO*, and Schaffitzel C*. (2013) Nat. Struct. Mol. Biol. 20(5), 604-610. “Structural basis of signal sequence surveillance and selection by the SRP-FtsY complex.” PMID: 23563142.
50. Jaru-Ampornpan P, Liang FC, Nisthal A, Nguyen TX, Wang P, Shen K, Mayo SL, and Shan SO*. (2013) J. Biol. Chem. 288(19), 13431-13445. “Mechanism of an ATP-independent protein disaggregase. II. Distinct molecular interactions drive multiple steps during aggregate disassembly.” PMID: 23519468.
49. Nguyen TX, Jaru-Ampornpan P, Lam VQ, Cao P, Piszkiewicz S, and Shan SO*. (2013) J. Biol. Chem. 288(19), 13420-13430. “Mechanism of an ATP-independent protein disaggregase. I. Structure of a membrane protein aggregate reveals a mechanism of recognition by its chaperone.” PMID: 23525109.
48. Pierce NW‡, Lee JE‡, Liu X, Sweredoski MJ, Graham RLJ, Larimore EA, Rome ME, Zheng N, Clurman BE, Hess S, Shan SO‡‡, and Deshaies RJ‡‡*. (2013) Cell 153(1), 206-215. “Cand1 promotes assembly of new SCF complexes through dynamic exchange of F box proteins.” PMID: 23453757. Preview: Cell 153(1), 14-16. Highlighted in Faculty of 1000.
47. Akopian D, Dalal K, Shen K, Duong F, and Shan SO*. (2013) J. Cell Biol. 200(4), 397-405. “SecYEG activates GTPases to drive the completion of cotranslational protein targeting.” PMID: 23401005. Highlight: J. Cell Biol. 200(4), 362.2 (2013).
46. Akopian D, Shen K, Zhang X, and Shan SO*. (2013) Annu. Rev. Biochem. 82, 693-721. Review. “Signal recognition particle: an essential protein targeting machine.” PMID: 23414305.
2012
45. Shen K, Arslan S, Akopian D, Ha T, and Shan SO*. (2012) Nature 492(7428), 271-275. “Activated GTPase movement on an RNA scaffold drives cotranslational protein targeting.” PMID: 23235881. News and Views: Nature 492, 189-191 (2012). Highlighted in Faculty of 1000.
44. Ariosa AR, Duncan S, Saraogi I, Lu X, Brown A, Phillips GJ, and Shan SO*. (2012) Mol. Biol. Cell. 24(2), 63-73. “Fingerloop activates cargo delivery and unloading during co-translational protein targeting.” PMID: 23135999.
43. Liu M*, Lara-Lemus R, Shan SO, Wright J, Haataja L, Barbetti F, Guo H, Larkin D, and Arvan P*. (2012) Diabetes 61, 828-837. “Impaired cleavage of preproinsulin signal peptide linked to autosomal-dominant diabetes.” PMID: 22357960.
42. Zhang D and Shan SO*. (2012) J. Biol. Chem. 287(10), 7652-7660. “Translation elongation regulates substrate selection by the signal recognition particle.” PMID: 22228766.
41. Zhang D, Sweredoski MJ, Graham RL, Hess S, and Shan SO*. (2012) Mol. Cell Proteomics, 11(2), M111.011585. “Novel proteomic tools reveal essential roles of SRP and importance of proper membrane protein biogenesis.” PMID: 22030350.
2011
40. Saraogi I, Akopian D, and Shan SO*. (2011) Protein Sci. 20, 1790-1795. Review. “A tale of two GTPases in co-translational protein targeting.” PMID: 21898651.
39. Saraogi I, Zhang D, Chandrasekaran S, and Shan SO*. (2011) J. Am. Chem. Soc. 133, 14936-9. "Site-specific fluorescent labeling of nascent proteins on the translating ribosome." PMID: 21870811.
38. Nguyen TX, Chandrasekar S, Neher S, Walter P, and Shan SO*. (2011) Biochemistry 50, 7208-7217. “Concerted complex assembly and GTPase activation in the chloroplast signal recognition particle.” PMID: 21780778.
37. Ataide SF, Schmitz N‡, Shen K‡, Ke A, Shan SO, Doudna JA*, and Ban N*. (2011) Science 331, 881-886. “The crystal structure of the signal recognition particle in complex with its receptor.” PMID: 21330537. Highlighted in Faculty of 1000.
36. Shen K, Zhang X, and Shan SO*. (2011) RNA 17, 892-902. “Synergistic actions between the SRP RNA and translating ribosome allow efficient delivery of the correct cargos during cotranslational protein targeting.” PMID: 21460239.
35. Saraogi I and Shan SO*. (2011) Traffic 12, 535-542. Review. “Molecular mechanism of co-translational protein targeting by the signal recognition particle.” PMID: 21291501.
34. Estrozi LF‡, Boehringer D‡, Shan SO, Ban N*, and Schaffitzel C*. (2011) Nat. Struct. Mol. Biol. 18, 88-90. "Cryo-EM structure of the E. coli translating ribosome in complex with SRP and its receptor.” PMID: 21151118.
33. Zhang X, Lam VQ‡, Mou Y‡, Kimura T, Chung J, Chandrasekar S, Winkler JR, Mayo SL, and Shan SO*. (2011) Proc. Nat. Acad. Sci. 108, 6450-6455. “Direct visualization reveals dynamics of a transient intermediate during protein assembly.” PMID: 21464281.
2010
32. Lam VQ‡, Akopian D‡, Rome ME‡, Henningsen D, and Shan SO*. (2010) J. Cell. Biol. 190, 623-635. “Lipid activation of the signal recognition particle receptor provides spatial coordination of protein targeting.” PMID: 20733058.
31. Zhang X, Rashid R, Wang K, and Shan SO*. (2010) Science 328, 757-760. "Sequential checkpoints govern substrate selection during cotranslational protein targeting.” PMID: 20448185.
30. Jaru-Ampornpan P, Shen K‡, Lam VQ‡, Ali M, Doniach S, Jia TZ, and Shan SO*. (2010) Nat. Struct. Mol. Biol. 17, 696-702. “ATP-independent reversal of a membrane protein aggregate by a chloroplast SRP subunit.” PMID: 20424608. News and Views: Nat. Struct. Mol. Biol. 17, 676-677 (2010).
29. Shen K and Shan SO*. (2010) Proc. Natl. Acad. Sci. U. S. A. 107, 7698-7703. “Transient tether between the SRP RNA and SRP receptor ensures efficient cargo delivery during cotranslational protein targeting.” PMID: 20385832.
2009
28. Pierce NW, Kleiger G, Shan SO‡, and Deshaies RJ‡*. (2009) Nature 462, 615-619. “Detection of sequential polyubiquitylation on a millisecond timescale.” PMID: 19956254. News and Views: Nature 462, 585-586 (2009).
27. Jaru-Ampornpan P, Nguyen TX, and Shan SO*. (2009) Mol. Biol. Cell 20, 3965-3973. "A distinct mechanism to achieve efficient signal recognition particle (SRP)-SRP receptor interaction by the chloroplast SRP pathway.” PMID: 19587121.
26. Shan SO*, Schmid S, and Zhang X. (2009) Biochemistry 48, 6696-6704. Review. “Signal recognition particle (SRP) and SRP receptor: a new paradigm for multistate regulatory GTPases.” PMID: 19469550.
25. Zhang X, Schaffitzel C, Ban N, and Shan SO*. (2009) Proc. Natl. Acad. Sci. 106, 1754-1759. "Multiple conformational switches in a GTPase complex control co-translational protein targeting." PMID: 19174514.
2008
24. Zhang X, Kung S, and Shan SO*. (2008) J. Mol. Biol. 381, 581-593. "Demonstration of a multistep mechanism for assembly of the SRP-SRP receptor complex: implications for the catalytic role of SRP RNA." PMID: 18617187.
23. Chandrasekar S‡, Chartron J‡, Jaru-Ampornpan P, and Shan SO*. (2008) J. Mol. Biol. 375, 425-436. “Structure of the chloroplast signal recognition particle (SRP) receptor: domain arrangement modulates SRP-receptor interaction.” PMID: 18035371.
2007
22. Shan SO*, Chandrasekar S, and Walter P. (2007) J. Cell Biol. 178, 611-620. “Conformational changes in the GTPase modules of the signal recognition particle and its receptor drive initiation of protein translocation.” PMID: 17682051. Highlighted in Faculty of 1000.
21. Jaru-Ampornpan P, Chandrasekar S, and Shan SO*. (2007) Mol. Biol. Cell 18, 2636-2645. “Efficient interaction between two GTPases allows the chloroplast SRP pathway to bypass the requirement for an SRP RNA." PMID: 17475780. Highlighted in InCyte from MBC.
1992-2006
20. Shan SO* and Walter P. (2005) Biochemistry 44, 6214-6222. “Molecular crosstalk between the nucleotide specificity determinant of the SRP GTPase and the SRP receptor.” PMID: 15835909.
19. Shan SO and Walter P*. (2005) FEBS Letters 579, 921-926. Review. “Co-translational protein targeting by the signal recognition particle.” PMID: 15680975.
18. Chu F, Shan SO, Moustakas DT, Alber F, Egea F, Stroud RM, Walter P, and Burlingame AL*. (2004) Proc. Natl. Acad. Sci. U. S. A. 101, 16454-16459. “Unraveling the interface of signal recognition particle and its receptor by using chemical cross-linking and tandem mass-spectrometry.” PMID: 15546976.
17. Shan SO*, Stroud RM, and Walter P. (2004) PLoS Biology 2, e320. “Mechanism of association and reciprocal activation between two GTPases.” PMID: 15383838. Highlighted in Faculty of 1000.
16. Egea PF, Shan SO, Napetschnig J, Savage DF, Walter P, and Stroud RM*. (2004) Nature 427, 215-221. “Substrate twinning activates the signal recognition particle and its receptor.” PMID: 14724630. Highlighted in Faculty of 1000.
15. Shan SO and Walter P*. (2003) Proc. Natl. Acad. Sci. U. S. A. 100, 4480–4485. “Induced nucleotide specificity in a GTPase.” PMID: 12663860.
14. Shan SO and Herschlag D*. (2002) RNA 8, 861-872. “Dissection of a metal-ion-mediated conformational change in Tetrahymena ribozyme catalysis.” PMID: 12166641.
13. Peluso P, Shan SO, Nock S, Herschlag D, and Walter P*. (2001) Biochemistry 40, 15224-15233. “Role of SRP RNA in the GTPase cycles of Ffh and FtsY.” PMID: 11735405. Highlighted in Faculty of 1000.
12. Shan SO, Kravchuk AV, Piccirilli JA*, and Herschlag D*. (2001) Biochemistry 40, 5161-5171. “Defining the catalytic metal ion interactions in the Tetrahymena ribozyme catalysis.” PMID: 11318638. Link to Biochemistry.
11. Shan SO and Herschlag D*. (2000) RNA 6, 795-813. “An unconventional origin of metal-ion rescue and inhibition in the Tetrahymena group I ribozyme reaction.” PMID: 10864040. Link to RNA.
10. Yoshida A‡, Shan SO‡, Herschlag D*, and Piccirilli JA*. (2000) Chem. Biol. 7, 85-96. “The role of the cleavage site 2'-hydroxyl in the Tetrahymena group I ribozyme reaction.” PMID: 10662698. Link to Chem. & Biol.
9. Shan SO, Yoshida A, Sun S, Piccirilli JA*, and Herschlag D*. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 12299-12304. “Three metal ions at the active site of the Tetrahymena group I ribozyme.” PMID: 10535916. Link to PNAS.
8. Shan SO, Narlikar GJ, and Herschlag D*. (1999) Biochemistry 38, 10976-10988. “Protonated 2'-aminoguanosine as a probe of the electrostatic environment of the active site of the Tetrahymena group I ribozyme.” PMID: 10460152. Link to Biochemistry.
7. Shan SO and Herschlag D*. (1999) Biochemistry 38, 10958-10975. “Probing the role of metal ions in RNA catalysis: kinetic and thermodynamic characterization of a metal ion interaction with the 2'-moiety of the guanosine nucleophile in the Tetrahymena group I ribozyme.” PMID: 10460151. Link to Biochemistry.
6. Shan SO and Herschlag D*. (1999) in Methods in Enzymology, vol 308, part E, ed. V. Schramm & D.L. Purich, Academic Press, New York. pp 246-275. “Hydrogen bonding in enzymatic catalysis: analysis of energetic contributions.” PMID: 10507008.
5. Shan SO and Herschlag D*. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 14474-14479. “The change in hydrogen bond strength accompanying charge rearrangement: implications for enzymatic catalysis.” PMID: 8962076. Link to PNAS.
4. Shan SO and Herschlag D*. (1996) J. Am. Chem. Soc. 118, 5515-5518. “Energetic effects of multiple hydrogen bonds. Implications for enzymatic catalysis.” Link to JACS.
3. Shan SO, Loh S, and Herschlag D*. (1996) Science 272, 97-101. “The energetics of hydrogen bonds in model systems. Implications for enzymatic catalysis.” PMID: 8600542. Link to Science.
2. Shan SO and Armstrong RN*. (1994) J. Biol. Chem. 269, 32373-32379. “Rational reconstruction of the active site of a class mu glutathione S-transferase.” PMID: 7798237. Link to JBC.
1. Zhang P, Liu S, Shan SO, Ji X, Gilliland GL*, and Armstrong RN*. (1992) Biochemistry 31, 10185-10193. “Modular mutagenesis of eons 1, 2, and 8 of a glutathione S-transferase from the mu class: mechanistic and structural consequences from chimeras of isoenzyme 3-3.” PMID: 1420140. Link to Biochemistry.